GLSVLSI 2022

Attack Resistant Crypto Circuits

Sanu Mathew

Circuits Research Labs Hillsboro, Oregon

Motivation: Securing Data

AES: de-facto symmetric-key encryption algorithm

10-14 round iterative cipher encrypting 128b plaintext using secret key

Power/EM Side-channel Attacks on AES

- Multiple AES instances for AES-NI, display, memory, IO, secure DFx, media.
- Key-related switching activity present in current and EM signatures.
- Correlation power analysis extracts correlation between keys and measured traces.

Physical access to device implies access to embedded secrets

Power Analysis Attacks Revealing the Secrets of Smart Cards

Stefan Mangard Elisabeth Oswald Thomas Popp

intel

3

Power/EM Side-channel Attacks

- Attacker sends in random plaintext and builds power models with key guesses
- Collects current/EM traces as the chip encrypts data
- With large number of traces, the model with correct key guess shows high correlation

AES keys extracted within 1hr

Remote Side-channel Attack on AES: Platypus

PLATYPUS AES-NI Kev Recovery

WITH GREAT POWER COMES GREAT LEAKAGE

With **PLATYPUS**, we present novel software-based **power side-channel attacks** on Intel server, desktop and laptop CPUs. We exploit the **unprivileged access** to the Intel <u>RAPL</u> interface exposing the processor's power consumption to **infer data** and **extract cryptographic keys**.

* < > + Q = Z B

- Platypus attack published by in 2021
- Exploits RAPL (Running Average Power Limit) interface to monitor CPU power consumption
- AES keys recovered in <1M traces

Fault-injection Attacks on AES

- Malicious fault-injection using voltage/clock-glitch, laser attack
- PlunderVolt: manipulates DVFS to inject faults in MEE
- One injected fault corrupts 4 ciphertext output bytes
- Reduces AES key security from 128b to 32b

Public Key Cryptography with RSA

Public key crypto is a critical component of secure systems

- Applications: Key exchange, digital signatures, authentication, etc.
 RSA is gaining renewed interest with quantum computer attacks
- ECC prone to quantum attacks due to shorter key lengths
- Key lengths > 4K currently employed in cryptosystems
- RSA performance determines sign/verification latencies

Side-channel Attacks on Public-key RSA

- Square-multiply signature clearly visible in power traces
- RSA-512 keys extracted within 40 traces

Attack-Resistant Crypto Circuits

- Physical side-channel attacks are a clear and present danger
- SCA undermines security value proposition of crypto HW

<u>Credible countermeasures are a design imperative</u>

Random Additive Masking

D. Canright and L. Batina, ACNS2008

- Random mask added to plaintext before key addition operation
- Mask inversion factors computed in parallel to compensate final ciphertext
- New masks/round are generated by permuted congruential generator (PCG)
 - PCG reseeded for every 1M cycles from a TRNG to prevent attacks on PRNG

Masked GF(2⁴) Multiplier

- Masked multiplier computes the product of masked GF(2⁴) operands
 - 3 additional regular GF(2⁴) multipliers compute masking byproducts in parallel
- Area overhead: 4x
- Delay overhead: 1.5x

Masked GF(2⁴) Inverse

- Fermat's little theorem (X⁻¹=X¹⁴) used to compute masked GF(2⁴) inverse
- Parallel datapath computes the mask compensation factor (*m*¹⁴)
- <u>Area overhead</u>: 2x
- <u>Delay overhead</u>: 2x

Masked AES Sbox

- Masked Sbox datapath implements Sbox(X+mask_{in}) = Sbox(X) + mask_{out}
- Regular multipliers and inverse blocks are replaced by masked counterparts
- All internal circuit nodes contain a mask component m_i

Internal switching activity opaque to external observer

SCA Attacks on Masked AES

- Correlation power and EM attacks mounted with SCA-resistant mode enabled
- CPA/CEMA attacks unsuccessful after 1B encryptions (>40,000× MTD increase)

SCA Attacks on Masked AES

- Model independent leakage analyzed using TVLA fixed vs. random vectors
- |t|-score < 4.5 after 30M encryptions (>27,000× MTD increase)
- Area overhead: 2x-6x
- Delay overhead 1.5x

Provably secure, but comes at high cost!

SCA-resistance when/if you need it Reconfigurable AES

Reconfigurable Dual-core AES

- Mask compensation datapath unused when SCA-resistance is not required
- Dual-core mode repurposes mask datapath to enable 2×higher throughput
 - Enables user to improve performance when operating in trusted environments

Dual-Core GF(2⁴) Multiplier

- Masked GF(2⁴) multiplier reconfigured to accept second pair of operands
- <1% area overhead incurred by reconfiguration multiplexers

Dual-Core GF(2⁴) Inverse

- Masking datapath repurposed to accept the second operand (b) through mask pin
- <2% area overhead incurred by reconfiguration logic

Dual-Core AES Sbox

- Mask compensate logic accepts second pair of operands (*bh*, *bl*) in dual-core mode
- Reconfiguration adds 4 multiplexers to the round critical path
 - 6% area overhead

AES Throughput Measurements

Reconfigurable AES fabricated in Intel 4

SCA-resistant mode:

- Fmax of 647MHz
- AES throughput of 8.3Gbps

Dual-core mode:

- Fmax of 701MHz (8%↑)
- AES-128 throughput of 18Gbps (2.2x¹)

Blind-Bulk Mode

- Bulk data encryption is critical for encrypting memory, hard drives, SSDs, etc.
 - Proposed AES operates in blind-bulk mode to encrypt bulk data
- Random switching between SCA-resistant and dual-core modes
- Enables throughput vs security trade-offs by adjusting #SCA-resistant encryptions

Blind-Bulk Mode Datapath

- Control block randomly switches between SCA/dual-core modes
 - Plaintext loaded from input buffer is added with random mask in SCA mode
 - Pair of plaintexts are fetched from buffer in dual-core mode
- 256b PCG controls the ratio (*p*) of SCA-resistant mode

Blind-Bulk Mode Operation

- Blind-bulk mode is time-invariant to prevent timing attacks
 - Total latency for n AES-128/256 encryptions: 5/7*n*(1+p)
- Blind mode ratio (p) enables throughput vs side-channel resistance trade-offs

Blind-Bulk AES Throughput

- SCA-resistant mode ratio (p) swept between 0.1-0.9 for AES throughput
- 1.06-1.94× improvement in encryption throughput
- Enables throughput vs SCA-resistance trade-offs

Blind-Bulk Mode SCA Analysis

- SCA-resistant mode ratio (p) shows linear increase in TVLA MTD
 - 400/1200/12000× improvement in MTD for p=0.25/0.5/0.75
- 400× improvement in CPA/CEMA MTD for p=0.25
- No key bytes revealed for p=0.5/0.75 after 50M traces (>2000× increase)

Lightweight SCA-resistant AES Heterogenous Sbox AES

SCA-resistant Heterogenous-Sbox AES

R. Kumar et al., VLSI 2019

- 16b serial datapath
- Three SCA-resistance features:
 - Dual-rail key addition
 - Heterogeneous Sboxes
 - Masked MixColumns

Composite-field Sbox Datapath

Composite-field GF(2⁴)² polynomials have strong influence on Sbox circuits 1.92x spread in Sbox power across 160 area-sorted polynomials

Heterogeneous Sbox Dataflow

Randomized dataflow switching

- Disrupts power correlations by random dataflow through heterogenous Sboxes
- 16b LFSR updates dataflow direction every cycle
- LFSR reseeded with intermediate ciphertext to prevent averaging attacks
 - Least significant bytes of data used as reseed
 - LFSR reseeded at end of key expansion

SCA Attacks on Unprotected AES

Attackpoints in unprotected AES

- Unprotected 16b serial, 108cycle latency AES fabricated in 14nm CMOS
- Three attack points cover all attack surfaces within the design
- Successful CPA attack with minimum traces to disclosure (MTD) of 10,000

CPA Attacks on Heterogenous Sbox AES

14nm CMOS Measurements, 0.75V, 100MHz, 25°C

- Power traces collected with all 3 SCA-resistance techniques enabled
- No key bytes extracted after 12Million encryptions (>1200x improvement in MTD)
- 9.2x reduction in correlation over unprotected AES with an average rank of 139
 - **1100x** improvement in TVLA assessment

Lightweight SCA-resistant AES Multiplicatively-masked AES

- Multiply a random 128b mask to the data prior to non-linear operation
- Mask compensation is relatively trivial (area overhead 25-50%)
- Vulnerable to zero-value attack (p+k=0)
- Preemptively detect zero value and obscure with random data

Protecting public-key Crypto SCA-resistant RSA

SCA Attacks on Unprotected RSA

- Unprotected RSA-4K datapath fabricated in 14nm CMOS
 - Power/EM attacks mounted on unprotected RSA
 - Single-trace (Horizontal) and multi-trace (Vertical) attacks to quantify SCA leakage

SCA Attacks on Unprotected RSA

- Peak correlation point identified on trace
- 660× mean-separation over random binning of exponents
- **5.7**× growth in μ/σ with multi-trace attacks
- K-means cluster attacks show:
- iCks
 means cluster attacks show:
 68/59% accuracy for single-trace power/EM
 0.745
 0.745
 0.740
 0.735
- power/EM attacks

SCA-resistant RSA-4K Organization

R. Kumar et al., VLSI 2020

- 128b ALU performs single-cycle multiply-add
- 32Kb RF stores operands and results
- User macro instructions are decoded to a program sequence
- Power/EM SCA-resistant features:
 - Exponent magnitude randomization
 - Exponent timing randomization

Exponent Magnitude Randomization

- Exponent split to a random 128b wide pre-exponent and calculated exponent
 - exp = exp_{pre} + exp_{calc}
 - Partial results from pre- and calc- exponents multiplied to get final product
- **25/3%** latency overhead for RSA-512/4K mode
- Constant pre-exponent width results in information leakage about expcalc

- Pre-exponent width randomized for every encryption run by a 7b on-chip LFSR
- Post-exponent width computed as 128-width(exp_{pre}) to produce time-invariant operation
 - base^{exppost} results are written to memory locations not used in exponentiation
- Switching activities of exponents convoluted in single/multi-trace attacks

SCA-resistant Modular Exponentiation

Main square-multiply loop interpolated between additional exppre and exppost loops

Guaranteed total iteration count of 4224 in RSA-4K mode

14nm SCA Attack Measurements on RSA

- <0.05% area overhead from SCA-resistant features
- RSA-4K latency of 22M cycles (50ms sign/verification time)
- Langer RF-2/MFA probe set used for EM measurements

42

SCA Attack Measurements

- **711**× suppression in means separation over unprotected RSA
- K-means attack measurements:
- 52% accuracy for single-trace
- ~50% accuracy for multi-trace

SCA Attack Measurements

Difference in μ/σ decreases by **3**× approaching a difference of zero

 No discernible separation in means for efficient binning

Algorithm-agnostic SCA-resistance IVR-based SCA-AES

Non-linear DLDO Organization

AES current spectrogram shows information content in 600-800MHz band Linear LDO leaks information in frequency-domain with modest SCA improvement Non-linear LDO with fast response needed to mask high-frequency transients Arithmetic techniques provide uniform improvements in time/frequency domain

Goal: >10⁵ × MTD improvement in both frequency/time domains

Non-linear DLDO Organization

R. Kumar et al., VLSI 2020

3-level non-linear controller

- **500ps** response time to fast transients
- 15 PMOS tiles, each configured as:
 - Static current source
 - Tunable dynamic clamp
 - Variable combination of static/dynamic clamps
- NLC loop triggered by 3 comparators:
 - V_H, V_L and reset (V_R)
 - $V_{out} > V_H \rightarrow disables all tiles$
 - $V_{out} < V_L \rightarrow$ enables tiles at dynamic[7:0] strength
 - $V_{out} < V_R \rightarrow$ enables all tiles at full strength

IVR Loop Parameters Exploration

Measured V_{aes} waveform

Static clamp strength modulates regulator output resistance

Lower settings create frequent clamping, while higher settings propagate switching transients
 Sweep of clamp strength shows peak SCA resistance at TC=7, static=18 and dynamic=20
 Maximum droop of 36mV observed across entire sweep range

NL-DLDO parameters randomized with LDO biased at peak SCA resistance setting 31b on-chip LFSR seeded by TRNG randomizes IVR control loop parameters **Randomized parameters**: Clamp strengths, voltage thresholds (V_H , V_L and V_R) 31b mask value controls the randomization range for stable IVR operation

Loop Parameters Randomization

CPA attacks mounted with loop parameters randomized in stable operating range

- Correlation ratio (CR) < 1 observed across entire frequency spectrum of load transients
- 8.2× lower CR over standalone AES after 1M encryptions

1900× improvement in frequency-domain MTD over the unprotected AES implementation Information leakage observed after 1M traces in frequency-domain

NL-DLDO with Arithmetic Countermeasures

250M power and EM traces collected with loop parameter randomization and arithmetic countermeasures enabled

TVLA score < 4.5 for both power and EM measurements after 250M encryptions

>250,000 × improvement in MTD over unprotected AES implementation

CPA Measurements

- **1Billion** power and EM traces collected
- CPA and CEMA attacks show no key bytes were extracted with 1B encryptions
 - 5-6.8× suppression in trace correlation ratios

Machine-Learning Attacks ML-resistant StrongPUFs

ML-modeling attack resistant StrongPUF

- StrongPUF offer a lightweight solution to secure authentication
- V. Suresh et al., VLSI 2020

- They are vulnerable to machine-learning modelling attacks
- Stability-aware challenge pruning reduces BER to 0.26%
- 2-stage non-lineary cascaded PUF with adversarial challenge selection

Summary

- Attack-resistant crypto HW are the foundation of secure systems
- SCA-resistant AES
 - Random additive-masking
 - Reconfigurable AES with blind-bulk mode
 - Heterogenous Sbox AES
 - Multiplicatively masked AES
 - Non-linear IVR-coupled AES
- SCA-resistant RSA
 - Exponent magnitude/timing randomization
- ML-resistant Strong PUF
 - 2-stage non-lineary cascaded PUF with adversarial challenge selection

#